

1

Abstract – Earth System Science Server (ES3) is a suite of

technologies for managing end-to-end science data product
creation, maintenance, updating, and dissemination. ES3 has
four main components: Metadata management keeps track of
external data objects imported, processes run, data objects
created, data products delivered, and lineage (ancestor-
descendent relationships between processes and data streams.
Process management uses a generic Linux cluster to perform
both science and production processing. Data management keeps
all data online in mirrored server pairs, acquired “just-in-time”
to leverage plummeting hardware costs. Data product
dissemination exposes products via three mechanisms: well-
know URIs that follow community-standard naming schemes
and support OpenDAP services; seamless layers in a pre-
computed hierarchy of resolutions, via the Microsoft
TerraServer; and library-style searches using the Alexandria
Digital Library web services. The ES3 prototype will manage
the creation, updating and distribution of snow-covered area,
snow albedo, and snow water equivalence data products.

I. INTRODUCTION
Current computing environments and research practices

provide little support for bridging the gap between research
and production. A researcher responsible for creating data
products won’t necessarily record the details of inputs,
outputs, and processing steps, so that publishing these
products with adequate metadata usually requires
reorganizing the data and creating or rediscovering metadata
values. Dissemination, especially where custom processing
such as subsetting, re-projection, or reformatting is required,
is often treated in a similarly ad hoc fashion.

Earth System Science Server (ES3) is an umbrella term for
a local infrastructure for Earth science product management.
By “local,” we mean the infrastructure that a scientist uses to
manage the creation and dissemination of her own data
products, particularly those that are constantly incorporating
corrections or improvements based on the scientist’s own
research. A local infrastructure, in addition to being robust
and capacious enough to support public access, must be
flexible enough to manage the idiosyncratic computing

This work was supported by the U.S. National Aeronautics and Space

Administration under Cooperative Agreement NNG04GC52A.

ensembles that typify scientific research.
ES3 is a suite of technologies for managing end-to-end

science data product creation, maintenance, updating, and
dissemination. ES3 has four main components: metadata
management, process management, data management, and
data product dissemination.

Metadata management keeps track of everything that
happens in the system -- external data objects imported,
processes run, data objects created, and data products
delivered. ES3 also captures and maintains lineage metadata,
i.e. the ancestor-descendent relationships between processes
and data streams that are absolutely critical for establishing
the pedigree and credibility of investigator-generated data
products.

Process management uses a generic Linux cluster to
perform both science (e.g. algorithm development) and
production (e.g. custom subsetting) processing.

Data management keeps all data online in RAID arrays
with 100% off-site mirroring. ES3-managed online objects
are accessible via their object identifiers; a database maintains
the correspondence between object identifiers and file names
or database queries. Storage is managed as mirrored server
pairs, acquired “just-in-time” to leverage plummeting
hardware costs.

Data product dissemination exposes products via three
mechanisms:

• well-know URIs that follow community-standard
naming schemes and support OpenDAP services;

• seamless layers in a pre-computed hierarchy of
resolutions, via the Microsoft TerraServer; and

• library-style searches using the Alexandria Digital
Library web services.

II. METADATA MANAGEMENT
The metadata management component is the heart of ES3,

keeping track of everything that happens in the system –
external data objects imported, processes run, data objects
created, and data products delivered. Metadata about all these
activities are captured by the “Lab Notebook” (LN) subsystem
[3] (Figure 1). Scripting language (Perl, Python, sh, etc.)

Earth System Science Server (ES3):
Local Infrastructure for Earth Science Product Management

James Frew
Donald Bren School of Environmental Science and Management

and
Institute for Computational Earth System Science

University of California
Santa Barbara, CA 93106-5131

2

“wrappers” use the LN network application programmer
interface (API) to create and send XML metadata about ES3
processes or events to the LN database.

LN _Database
Client machine

Application server

Database server

LN_Daemon
LN_Console

Lab Notebook
Client

LN_Client API

Perl
scripts

metadata values

Lab Notebook
Server

Application server

JDBC/ODBC

LN_API

queries, XML
documents

XML DTDs, metadata
templates

LN _Database
Client machine

Application server

Database server

LN_Daemon
LN_Console

Lab Notebook
Client

LN_Client API

Perl
scripts

metadata values

Lab Notebook
Server

Application server

JDBC/ODBC

LN_API

queries, XML
documents

XML DTDs, metadata
templates

Figure 1. Lab Notebook subsystem.

Wrappers can be either synchronous (invoking, or invoked

by, their corresponding process or event) or asynchronous
(invoked independently to simulate or record a process or
event.) A unique feature of the Lab Notebook is its ability to
capture and maintain lineage metadata [2], i.e. ancestor-
descendent relationships between processes and data streams
that are absolutely critical for establishing the pedigree and
credibility of investigator-generated data products.

Metadata are accessed within ES3 by querying the LN
database through a variety of special-purpose clients. In
particular, clients are provided to administer the system, to
maintain a system-wide metadata registry, and to create the
metadata infrastructure (XML DTDs, database tables, etc.)
that supports new science data products. New clients can be
built using the LN network API (currently bound to Java and
Perl) or the LN database’s own client access mechanisms
(e.g., JDBC). The LN network API includes special methods
that dynamically reconstruct either forward (descendent) or
backward (ancestor) lineage graphs (Figure 2) for any process
or object known to the LN.

Figure 2. Eaxmple lineage graph.

III. PROCESS MANAGEMENT
The process management component of ES3 uses the LN

database to assemble the processing environment (commands,
parameters, and input data streams) necessary to create (or
recreate) any existing or potential object. This is predicated
on using synchronous wrappers, and saving stable references
to all necessary processed and wrappers in the LN. In almost
all cases, the processing environment of choice is a
commodity cluster, since it offers the best performance per
unit cost currently available, and most of our processing
algorithms are parallel. ES3 uses the NPACI Rocks software
suite [5] to manage clusters of Linux processors. Processing
environments (re-)created by the LN are submitted to the
Rocks scheduler as batch jobs. In the ESSW ESIP, we have
found that custom satellite product generation in this
environment typically completes in a few seconds. We have
also found it trivial to add additional computing capacity to
the cluster. New or even temporarily unused machines can be
“inducted” into the cluster in less than 20 minutes, so we can
use the computing power of hundreds of machines if
necessary.

IV. DATA MANAGEMENT
The data management component of ES3 keeps all data

online. Given the plummeting cost of online storage -- 50%
per year -- complex storage schemes like disk-tape hierarchies
cannot be justified for the storage volumes and support levels
at which ES3 is targeted. Both file and database storage are
supported. ES3-managed objects are accessible via their
object identifiers; a database maintains the correspondence

3

between object identifiers and file names or database queries.
Apart from object identifier management, the ES3 data

management component is completely generic. A typical ES3
installation will have a few commodity file servers supporting
several terabytes of RAID storage, accessible via NFS. Since
ES3 makes no further assumptions about storage
configuration, both servers and storage can be added “just in
time” to take maximum advantage of declining hardware
costs (and increasing storage density -- available physical
space being an increasingly important constraint on system
implementation.) Our current strategy is to purchase storage
in units of fully redundant servers (one primary and one
backup server) (Figure 3); as of May 2004 this costs less than
US$3000 per (redundant) terabyte served.

cheap
server

RAID 5 controller

cheap
server

(mirror)

RAID 5 controller

Back Up Brick
(BUB)

read read
(backup)

write

cheap
server

RAID 5 controller

cheap
server

(mirror)

RAID 5 controller

Back Up Brick
(BUB)

read read
(backup)

write

Figure 3. Online storage configuration.

V. DATA PRODUCT DISSEMINATION FOR DIFFERENT
USER GROUPS

The data product dissemination component of ES3 is
designed to make ES3-managed products accessible to as
large and diverse a community as possible:

Information providers are assumed to already know what
products they want; they will be the least tolerant of barriers
to immediate delivery of those products. These users are
offered direct access to standard or custom products via Web
services. Since ES3 keeps everything online, it is trivial to
make an ES3 data object accessible via a URL. Where
appropriate, access to standard transformations (e.g.
thresholding, subsetting, etc.) of an object will also be
provided using OpenDAP, either directly with an ES3
OpenDAP server, or indirectly with a third-party Open-DAP
server that has announced its availability through the
DODSter redirection service (Figure 4).

application
on client
machine

MODster server

actual data
server

what you do

what actually happens

DODs server

http://modster/MODIS/data_granule?operation

http://dodster/dods?operation&dataURL

ask for dataURL

return data
perform operation

on data

return what you
asked for

ask for operation on
specific data granule

redirectapplication
on client
machine

MODster server

actual data
server

what you do

what actually happens

DODs server

http://modster/MODIS/data_granule?operation

http://dodster/dods?operation&dataURL

ask for dataURL

return data
perform operation

on data

return what you
asked for

ask for operation on
specific data granule

redirect

Figure 4. Third-party processing using HTTP redirects.

Information browsers are assumed to be reasonably

familiar with a data product domain, but not necessarily with
the scope or character of an ES3’s holdings in that domain.
They may also wish to perform exploratory analyses on the
domain to help identify products subsets of interest. For these
users, ES3 will support random access to selected data
products through a Microsoft TerraServer interface [1].
Products to be made available through this interface are
hierarchically decomposed into nested tiles, which are stored
in the TerraServer database along with metadata to support
their rapid retrieval. In addition to supporting near-real-time
“pan-and-zoom” visualization of the product, TerraServer
queries can also be used to rapidly identify and examine
arbitrary subsets of interest.

Information seekers are assumed to have a constrained
notion (e.g. geophysical parameter, region, season, etc.) of
what they seek, but may be unfamiliar with the corresponding
providers and products. In addition to supporting the standard
Federation FIND interfaces, ES3 includes the Alexandria
Digital Earth Prototype (ADEPT) digital library middleware
[4], which allows an ES3 system to function as a node in the
Alexandria distributed geographic library [6]. Specifically,
the ADEPT middleware exposes standard Web services for
collection description, querying, and metadata report
retrieval. To an Alexandria user, an ES3 system appears to be
a library; products appear to be a collection; and an individual
object or service within a product appears to be a holding
within a collection (Figure 5). In addition to standard library
metadata, ADEPT metadata reports allow access to browse
imagery and product content.

4

Figure 5. ADEPT library interface to MODIS collection.

VI. THE SNOW SERVER
The prototype application of our ES3 technologies will be a

system to manage the creation, updating and distribution of
our three snow products -- snow-covered area, snow albedo,
and snow water equivalence. In all cases, the overriding goals
of the ES3 are to provide easy access to customized subsets of
trustworthy products.

Ease of access is supported by ES3’s multiple modes of
making products available: they can be discovered via the
Alexandria digital library, browsed and analyzed via the
TerraServer, and retrieved via Web services (simple GETs,
OpenDAP, or the TerraServer’s .NET interfaces).
Customized subsets are supported by allowing all products to
be subset, aggregated, or composed by space, time, and/or
parameter. The ES3 will also maintain user profile
information, both to simplify customizations for repeat users
and to allow the system to be tuned to better support frequent
requests (e.g., by pre-computing popular subset
combinations). Subsets will be implemented either in
response to OpenDAP or .NET requests, or in real-time
where supported by the TerraServer’s ES3-extended
capabilities.

Trustworthy products are supported by using the Lab
Notebook’s lineage management capabilities to rigorously
track the complete processing history of all products. Users of
snow ES3 products will see this both in the lineage
information they receive with their products (or request later),
and in the alerts they will optionally receive when subsequent
reprocessing invalidates or otherwise affects their products.
Put simply, it will always be possible to tell exactly where a
snow property dataset came from and how it was prepared,
and it will always be possible to determine which products
were derived from any ES3 object or process.

VII. CONCLUSION AND FUTURE DIRECTIONS
An ES3 system is an installation of ES3 components, under

common administration, functioning either parallel to, or as
an integral part of, an Earth scientist’s computing
environment. When deployed alongside an existing
computing environment, an system’s primary role is to
augment that environment with capabilities and services that
make existing scientific information more widely and reliably
accessible. This goal of “non-disruption” of current
environments is carried over from ESSW, and distinguishes
ES3 from information management approaches that require
everything to be under the control of a single system (DBMS;
GIS; etc.). This aspect of ES3 should make it especially
attractive to investigators that already have a significant
investment in a scientific computing infrastructure (hardware,
software, and modes of use) that they do not wish to abandon.
For these users, wrapper scripts and networked file systems
form the primary points of tangency between ES3 and their
existing environments. ES3 handles the “public” aspects of
their products, and their current environments continue to
support research and development.

We also expect that ES3 will serve as a nucleus for
establishing new scientific computing environments, since its
key components cover many of the capabilities these
environments will require. For sites that do not have already
have significant investments in processors or storage, the ES3
approach will offer much higher performance/price ratios
than single-vendor solutions. ES3’s Lab Notebook approach
to metadata acquisition and management may be attractive to
new sites by not foreclosing future options; whereas if a new
site chooses to manage all its metadata in (say) a GIS, then
that becomes a commitment to that particular technology. The
current best practices in Earth system science product
management are ad hoc; there is no turnkey “science data
system in a box.” ES3 moves towards that goal by
establishing simple interfaces to product management
capabilities, implementing them with state-of-the-art
components, and operating them with minimal impact on a
site’s research activities. ES3 bridges the gap between
research and production, as painlessly as possible for the
scientists responsible for both.

ACKNOWLEDGMENT
The team designing and building ES3 includes Rajendra

Bose, Michael Colee, Deborah Donahue, and Peter Slaughter.

REFERENCES
[1] T. Barclay, J. Gray, and D. Slutz, “Microsoft TerraServer: a spatial data

warehouse,” Microsoft Corporation, Redmond, WA Technical Report MS-
TR-99-29, 2000.

[2] R. Bose, “A conceptual framework for composing and managing scientific
data lineage,” in SSDBM 2002 - 14th International Conference on
Scientific and Statistical Database Management, Edinburgh, 2002, pp.
15-19.

5

[3] J. Frew and R. Bose, “Earth System Science Workbench: a data
management infrastructure for Earth science products.” in SSDBM 2001 –
13th International Conference on Scientific and Statistical Database
Management, Fairfax, VA, 2001, pp. 180-189.

[4] G. Janée and J. Frew, “The ADEPT digital library architecture,” in Second
ACM/IEEE-CS Joint Conference on Digital Libraries, Portland, OR,
2002, pp. 342-350.

[5] P. M. Papadopoulos, M. J. Katz, and G. Bruno, “NPACI Rocks: tools and
techniques for easily deploying manageable Linux clusters,” in
CLUSTER’01 - 3rd IEEE International Conference on Cluster
Computing, 2001, pp. 258-270.

[6] T. Smith, J. Frew, G. Janée, and L. Hill, “The Alexandria Digital Library
Project,” in NIT2001 12th International Conference on New Information
Technology - Global Digital Library Development in the New Millenium,
Beijing, 2001.

